Finding way-points Great-circle navigation
figure 2. great circle path between node (an equator crossing) , arbitrary point (φ,λ).
finally, calculate position , azimuth @ arbitrary point, p (see fig. 2), spherical version of direct geodesic problem. napier s rules give
.
)
sin
ϕ
=
cos
α
0
sin
σ
,
{\displaystyle {\color {white}.\,\qquad )}\sin \phi =\cos \alpha _{0}\sin \sigma ,}
tan
(
λ
−
λ
0
)
=
sin
α
0
sin
σ
cos
σ
,
tan
α
=
tan
α
0
cos
σ
.
{\displaystyle {\begin{aligned}\tan(\lambda -\lambda _{0})&={\frac {\sin \alpha _{0}\sin \sigma }{\cos \sigma }},\\\tan \alpha &={\frac {\tan \alpha _{0}}{\cos \sigma }}.\end{aligned}}}
the atan2 function should used determine σ01, λ, , α. example, find midpoint of path, substitute σ = ½(σ01 + σ02); alternatively find point distance d starting point, take σ = σ01 + d/r. likewise, vertex, point on great circle greatest latitude, found substituting σ = +½π. may convenient parameterize route in terms of longitude using
tan
ϕ
=
cot
α
0
sin
(
λ
−
λ
0
)
.
{\displaystyle \tan \phi =\cot \alpha _{0}\sin(\lambda -\lambda _{0}).}
latitudes @ regular intervals of longitude can found , resulting positions transferred mercator chart allowing great circle approximated series of rhumb lines. path determined in way gives great ellipse joining end points, provided coordinates
(
ϕ
,
λ
)
{\displaystyle (\phi ,\lambda )}
interpreted geographic coordinates on ellipsoid.
these formulas apply spherical model of earth. used in solving great circle on auxiliary sphere device finding shortest path, or geodesic, on ellipsoid of revolution; see article on geodesics on ellipsoid.
cite error: there <ref group=note> tags on page, references not show without {{reflist|group=note}} template (see page).
Comments
Post a Comment