Finding way-points Great-circle navigation



figure 2. great circle path between node (an equator crossing) , arbitrary point (φ,λ).


finally, calculate position , azimuth @ arbitrary point, p (see fig. 2), spherical version of direct geodesic problem. napier s rules give









.


)


sin

ϕ
=
cos


α

0


sin

σ
,


{\displaystyle {\color {white}.\,\qquad )}\sin \phi =\cos \alpha _{0}\sin \sigma ,}










tan

(
λ


λ

0


)



=



sin


α

0


sin

σ


cos

σ



,




tan

α



=



tan


α

0




cos

σ



.






{\displaystyle {\begin{aligned}\tan(\lambda -\lambda _{0})&={\frac {\sin \alpha _{0}\sin \sigma }{\cos \sigma }},\\\tan \alpha &={\frac {\tan \alpha _{0}}{\cos \sigma }}.\end{aligned}}}



the atan2 function should used determine σ01, λ, , α. example, find midpoint of path, substitute σ = ½(σ01 + σ02); alternatively find point distance d starting point, take σ = σ01 + d/r. likewise, vertex, point on great circle greatest latitude, found substituting σ = +½π. may convenient parameterize route in terms of longitude using







tan

ϕ
=
cot


α

0


sin

(
λ


λ

0


)
.


{\displaystyle \tan \phi =\cot \alpha _{0}\sin(\lambda -\lambda _{0}).}



latitudes @ regular intervals of longitude can found , resulting positions transferred mercator chart allowing great circle approximated series of rhumb lines. path determined in way gives great ellipse joining end points, provided coordinates



(
ϕ
,
λ
)


{\displaystyle (\phi ,\lambda )}

interpreted geographic coordinates on ellipsoid.


these formulas apply spherical model of earth. used in solving great circle on auxiliary sphere device finding shortest path, or geodesic, on ellipsoid of revolution; see article on geodesics on ellipsoid.

cite error: there <ref group=note> tags on page, references not show without {{reflist|group=note}} template (see page).







Comments

Popular posts from this blog

File format Wavefront .obj file

CEFR alignment Euroexam International

Books Soma Valliappan